The Cahn-hilliard Equation
نویسندگان
چکیده
1. Steady states. There are many two component systems in which phase separation can be induced by rapidly cooling the system. Thus, if a two component system, which is spatially uniform at temperature T1, is rapidly cooled to a second sufficiently lower temperature T2, then the cooled system will separate into regions of higher and lower concentration. A phenomenological description of the behavior of such systems can be obtained by energy arguments. The claim would be that there exists a critical temperature Tc, such that for T > Tc the free energy F (c, T ) of the system is a single welled function of the concentration c of one of the species, whereas for T < Tc the free energy is double welled. Referring to Figure 1, a system which was spatially uniform at temperature T1, when cooled to temperature T2, would find it energetically preferrable to separate itself into two systems, one at concentration cA and one at concentration cB. To be more specific consider now the system at temperature T < Tc. Assume that the free energy F (c) per unit volume (Gibbs free energy or Landau-Ginzburg free energy) of the spatially homogeneous system has the convex/concave shape indicated in Figure 2. More precisely F is concave in the spinodal interval cA < c < c s B and convex elsewhere. The points cA and cB where the supporting tangent touches the graph are sometimes referred to as the binodal points. The derivative f(c) = F (c) is depicted in Figure 3. The free energy of a spatially heterogeneous system would then be given by
منابع مشابه
The existence of global attractor for a Cahn-Hilliard/Allen-Cahn equation
In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0
متن کاملThe Spectral Method for the Cahn-Hilliard Equation with Concentration-Dependent Mobility
In this paper, we apply the spectral method to approximate the solutions of Cahn-Hilliard equation, which is a typical class of nonlinear fourth-order diffusion equations. Diffusion phenomena is widespread in the nature. Therefore, the study of the diffusion equation caught wide concern. Cahn-Hilliard equation was proposed by Cahn and Hilliard in 1958 as a mathematical model describing the diff...
متن کاملThe viscous Cahn - Hilliard equation . Part I : computations
The viscous Cahn-Hilliard equation arises as a singular limit of the phase-field model of phase transitions. It contains both the Cahn-Hilliard and Allen-Cahn equations as particular limits. The equation is in gradient form and possesses a compact global atUactor 4 comprising heteroclinic orbits between equilibria. Two classes of wmputati0n.m described,. First heteroclinic o&its on the global a...
متن کاملN ov 2 01 5 Nonlinear diffusion equations as asymptotic limits of Cahn – Hilliard systems Pierluigi Colli Dipartimento di Matematica , Università di Pavia and IMATI C . N . R . Pavia
An asymptotic limit of a class of Cahn–Hilliard systems is investigated to obtain a general nonlinear diffusion equation. The target diffusion equation may reproduce a number of well-known model equations: Stefan problem, porous media equation, Hele-Shaw profile, nonlinear diffusion of singular logarithmic type, nonlinear diffusion of Penrose–Fife type, fast diffusion equation and so on. Namely...
متن کاملLocal discontinuous Galerkin methods for the Cahn-Hilliard type equations
In this paper we develop local discontinuous Galerkin (LDG) methods for the fourth-order nonlinear Cahn-Hilliard equation and system. The energy stability of the LDG methods is proved for the general nonlinear case. Numerical examples for the Cahn-Hilliard equation and the Cahn-Hilliard system in one and two dimensions are presented and the numerical results illustrate the accuracy and capabili...
متن کاملThe Viscous Cahn{hilliard Equation Part I: Computations 1
The viscous Cahn-Hilliard equation arises as a singular limit of the phase-eld model of phase transitions. It contains both the Cahn-Hilliard and Allen-Cahn equations as particular limits. The equation is in gradient form and possesses a compact global attractor A, comprising heteroclinic orbits between equilibria. Two classes of computation are described. First heteroclinic orbits on the globa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1988